

Authorized Reseller

Strategic 3D Solutions, Inc. 4805 Green Road, Suite 114 Raleigh, NC 27616 919-451-5963 info@strategic3dsolutions.com

https://strategic3dsolutions.com/

A Manufacturing Workstation. Print Real ABS at 100°C. Powered by **strata**Sys

METHOD

METHOD X NEW

PRINT REAL, PRODUCTION-GRADE ABS WITH A 100°C CHAMBER. POWERED BY STRATASYS®.

 Capable of withstanding 15°C higher temperatures than modified desktop 3D printer ABS material formulations

> Powered by Stratasys® SR-30 soluble support material

 > Superior Z-layer bonding provides higher strength and better surface finish without warping and curling

MANUFACTURING-READY MATERIALS INCLUDING REAL ABS, PETG, TOUGH, AND MORE.

> Finished part dimensional accuracy of ± 0.2 mm (± 0.007 in)¹

> Get unrestricted geometric freedom with the METHOD dual extrusion system

> Print complex assemblies with exact tolerances

AN AUTOMATED, TINKER-FREE INDUSTRIAL PRINTING SYSTEM.

> 2x times faster printing than leading desktop 3D printers.²

> 300,000+ total testing hours on 150+ printers (includes full system and sub system testing).³

> Seamless CAD to Part workflow with

COMPARE METHOD MODELS

METHOD

М	Ē	T	н	0	D	х	NEW
---	---	---	---	---	---	---	-----

Dr.	MATERIALS	PLA, PETG, TOUGH	PLA. PETG. TOUGH
œ	MATERIALS	FER, FE 10, 100 001	ABS NEW
_			
20	SUPPORT	PVA	PVA
			SR-30 NEW
N -	CHAMBER	60%0	100%0
ĥ.	TEMPERATURE	60°C	100°C
	X bellows		\checkmark
	Power Requirements	100 - 240 V	100 - 240 V
	- sector i rangen ettrainez	3.9A - 1.6A, 50 / 60 Hz	8.1A - 3.4A, 50 / 60 Hz
		400 W max.	800 W max.
A	BUILD VOLUME	Single Extrusion	Single Extrusion
		19 L x 19 W x 19.6 H cm / 7.5 x 7.5 x 7.75 in	19 L x 19 W x 19.6 H cm / 7.5 x 7.5 x 7.75 in
		Dual Extrusion	Dual Extrusion
		15.2 L x 19 W x 19.6 H cm / 6.0 x 7.5 x 7.76 in	15.2 L x 19 W x 19.6 H cm / 6.0 x 7.5 x 7.75
	DIMENSIONAL	± 0.2mm / ±0.007in ¹	± 0.2mm / ±0.007in ¹
6	ACCURACY	± 0.2mm / ±0.007in*	± 0.2mm / ±0.007in '
îm	EXTRUDERS	Model Extruder	Model Extruder
W	EXTRODERS	Model 1	Model 1XA
		Support Extruder	Support Extruder
		Support 2	Support 2XA
ж	APPLICATIONS	CONCEPT	PRODUCTION
**	APPLICATIONS	Comment	
		- Quick prototypes - Fit tests	Manufacturing tools End-use parts
			- End-up parts

 1 \pm 0.2mm or \pm 0.002 mm per mm of travel – whichever is greater. Based on internal testing of selected geometries.

² Compared to popular desktop 3D printers when using the same layer height and infill density settings.

 $\label{eq:speed} Speed advantage dependent upon object geometry and material.$

³Combined total test hours of METHOD and METHOD X (full system and subsystem testing) expected to be completed around shipping of METHOD X.

METHOD APPLICATIONS

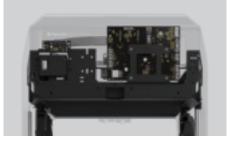
END-USE PARTS

Get dimensionally accurate, productiongrade, real ABS end-use parts at a fraction of traditional manufacturing costs. METHOD reduces costs and saves time for small production manufacturing runs.

MANUFACTURING TOOLS

Create durable, real ABS parts for the production floor. Print dimensionally accurate jigs, fixtures, and end-effectors that fit seamlessly with existing components.

FEATURES


DUAL PERFORMANCE EXTRUDERS

100°C CIRCULATING HEATED BUILD CHAMBER⁴

DRY-SEALED MATERIAL BAYS

CONNECTIVITY AND 21 ON-BOARD SENSORS

¹ ± 0.2mm or ± 0.002 mm per mm of travel – whichever is greater. Based on internal testing of selected geometries.

² Compared to popular desktop 3D printers when using the same layer height and infill density settings. Speed advantage dependent upon object geometry and material.

 $^{\rm 3}$ Combined total test hours of METHOD and METHOD X (full system and subsystem testing) expected to be completed around shipping of METHOD X.

on-molded specimens of MakerBot ABS compared to ABS from a tor. Tensile testing was performed according to ASTM D638 and HDT

FUNCTIONAL PROTOTYPES

Prototype with production-grade ABS to achieve part properties close to injection molded parts. Print dimensionally accurate assemblies and validate your designs to get your products to market faster—all at a fraction of industrial 3D printing costs.

SPECS

± 0.2mm / ±0.007in¹

LAYER RESOLUTION Maximum Capability: 20 - 400 micron

MAXIMUM BUILD VOLUME Single Extrusion 19 L x 19 W x 19.6 H cm / 7.5 x 7.5 x 7.75 in

Dual Extrusion 15.2 L x 19 W x 19.6 H cm / 6.0 x 7.5 x 7.75 in

EXTRUDERS Dual Performance Extruders (Model & Support)

MAKERBOT MATERIALS FOR METHOD

ABS⁴, Stratasys® SR-30⁴, PLA, TOUGH, PVA, PETG + more to come

MAKERBOT ABS PRECISION MODEL MATERIAL

TENSILE STRENGTH 43 MPa (12% higher than desktop 3D printer ABS)⁵

TENSILE MODULUS 2400 MPa (26% higher than desktop 3D printer ABS)⁵

HEAT DEFLECTION TEMPERATURE (HDT B – 0.45 MPA) 84°C (15°C higher than desktop 3D printer ABS)⁵

POWER REQUIREMENTS

METHOD	METHOD X
100 - 240 V	100 - 240 V
3.9A - 1.6A, 50 / 60 Hz	8.1A - 3.4A, 50 / 60 Hz
400 W max.	800 W max.

